
Introduction 
The Coronavirus disease 2019  (​COVID-19) has emerged as a worldwide pandemic over the last 

few months. The clinical spectrum of COVID-19 infection varies from asymptomatic to a severe 

clinical condition characterized by respiratory failure necessitating mechanical ventilation and 

support in an intensive care unit (ICU). To date, as infection rates continue to rise worldwide, no 

established method for predicting the risk for deteriorating to a critical state in COVID19 

patients exists. 

 

At the peak of the pandemic, The Sheba ARC Innovation Center has organized an international 

data challenge, offering data-science teams around the world access to hospitalized  COVID19 

data, with the purpose of supporting medical experts in making decisions about their patients by 

predicting clinical deterioration and detecting non-trivial underlying patterns in the clinical data. 

This in turn will allow a more fine grained understanding of the dynamics of the disease, as well 

as give a tool for hospitals in managing and predicting patient load. 

 

As at that time data was scarce, the disease course was unclear and clear clinical definitions for 

patient deterioration were not set, a novel approach for developing a clinically-usable prediction 

model was adopted by MAFAT, (MOD DDR&D) Israel’s Ministry of Defense department for 

technological innovations. 5 data-science teams, formed from commercial companies and 

academics specializing in AI in the private sector and, has assembled by MAFAT in order to 

work in collaboration on the same problem - each determining its own approach and methods 

according to its strengths, while working closely under the guidance of Sheba clinicians.  

 

This resulted in 5 different models, each with its strengths and weaknesses. As more and more 

data continues to unravel, and clinical needs are becoming clearer, clinicians will be able to 

choose the model most applicable for the clinical setting. Additionally, comparing the different 

models and analyzing their differences could potentially assist in the understanding of the 

disease course and treatment alternatives. One of the most significant outcomes is an AI driven 



pipeline that has the potential to be embedded as a support tool for COVID 19 clinical related 

procedures.  

 

This report summarizes the data provided by Sheba ARC, the different models designed by the 

different teams and their results.  As each team used different definitions and models, and 

subsequently received different results and conclusions, each following section will present a 

brief summary of each team’s approach, while a detailed report can be found in the Appendix.  

 

Methods 
 

Data description 

Sheba ARC Innovation provided access to information for 426 patients admitted to Sheba 

Medical Center COVID wards, including all patients with positive PCR until May 21, 2020. The 

data included demographic information, lab tests, medications, background diseases, diagnoses, 

hospitalizations, nursing actions, and more. The data is recorded for each patient from ER 

admission until discharge or unfortunate death. Some of the values, such as lab results, are taken 

multiple times during the course of disease. Therefore, each data point is provided along with a 

timestamp. All teams recognized 2 different types of data - 1. Static information, including 

demographic data, medical background, chronic medications, etc. 2. Time series information - 

includes measurements like HR, blood count, etc, taken at multiple times throughout the 

hospitalization. The 2 data types were treated differently during data preprocessing, as will be 

described. 

 

Target definition  

The main research question, as defined by Sheba ARC’s clinical team, was ‘can we predict 

COVID 19 patient clinical deterioration’. As patient deterioration is a vague medical term, 

without a solid clinical definition, each team defined ‘deterioration’ differently. As can be seen 

in table 1, 2 teams focused on deterioration to Invasive Mechanical Ventilation (IMV), while the 

remaining 3 teams defined ‘deterioration’ in a broader clinical term, including deteriorations in 



c-EWS score, ICU admission, administration of sedation and paralysis agents, administration of 

inotropic and vasopressor drugs, deterioration in oxygen saturation levels,  and death. 

 

 

Table 1 - target definition 

 1. Invasive Mechanical Ventilation (IMV) 
2. Death 
3. O2-saturation value below 93% 

Matrix 1. Invasive Mechanical Ventilation (IMV) 

Technion 1. Artificial respiration2.  
2. ICU admission,  
3. administration of sedation and paralysis agents 
4. administration of inotropic and vasopressor drugs 
5. death 

TSG 1. Invasive Mechanical Ventilation (IMV) 

BeyondMinds 1. Invasive Mechanical Ventilation (IMV) 
2. High c-EWS (covid adapted) score 
3. Deterioration of c-EWS score 

 

 

Time windows  

A crucial decision for the usability of a model is the time point during admission at which it is 

designed to be used for risk stratification by clinicians. 2 different approaches were taken by the 

different teams - the first is designing a model aimed for use during the early stages of 

hospitalization, and the second is designing a model that will predict deterioration throughout 

the entire admission duration. 

For all teams, static information, such as  demographic data, medical background, etc. was 

calculated once for every patient and was constant in the analysis. The dynamic data, such as lab 

results and vital signs measurements, was calculated in the designated time window for every 

team’s model based on the designated approach, as described in table 2. 

 



 

 

 

Table 2 - time windows 

Team Time window 

TSG Once at every hour, the algorithm defines a gap of several hours,            
and predicts IMV onset during a four hours window after the           
gap. several gaps were - 6, 12, 18, 24 hours 

BeydonMinds First 24  hours of admission 

Basis 1. Time slots at the beginning of hospitalization (12-96 hours) 
2. 0-5 hours look back windows 

Matrix Time slots at the beginning of hospitalization (24-72 hours) 

Technion All available data starting 6 hours after admission 

 

Feature Extraction 

Patient data included demographic information, lab tests, medications, background diseases, 

diagnoses, hospitalizations, nursing actions, and more. As the provided information was 

incredibly rich, and included information that may not be crucial for prediction, each team used a 

different subset of the available data. For feature engineering, all groups treated static and 

time-series features in a different manner, as previously mentioned. Only one group extracted 

information from textual data. The different feature subsets and feature extraction methods used 

is summarized in table 4. 

 

 

 

Table 4 - feature extraction 

Team Major selected features Static Data Time sequence data 

TSG Demographics, chronic 
conditions, labs, vital signs 
easutments 

Structured data Per window dataframe based 
on hourly data from last 6 
hours 



Matrix Demographics, chronic 
conditions, labs, vital signs 
easutments 

Structured data One hot encoding for 
categorical features, 5 time 
dependant measurements for 
time sequence data(mean, max, 
trend, first, last) 

BeyondM
ind 

Demographics, chronic 
conditions, labs, vital signs 
easutments, free text 

200 features 
were extracted 
from the free text 
text fields 

Described by basic statistics 
such as mean, std, median in 
each window 
 

Basis Lab tests and measurements Structured data the latest result of every 
relevant marker. 

Technion Demographics, chronic 
conditions, labs, vital signs 
easutments 

Structured data Survival analysis 

 

Model design 

The teams used different model designs and algorithms based on the definitions described in 

previous sections. 3 teams used classic machine learning algorithms on data available at the 

relevant time window, 1 team used a transfer learning approach based on the MIMIC dataset, 

and 1 team used a survival-analysis approach. Model designs are stated in table 5 

 

Table 5 - model designs 

Team Model design Algorithms 

TSG Transfer learning in 3 stages - Predict onset of IMV 
on pre-COVID-19 data (MIMIC-III), Data matching 
Sheba-MIMIC,  domain shifting algorithm 

XGBoost 

BeyondMinds Comparison between 4 models based on 4 model 
designs : 
1. Hard labeling - Stratified K Folds 
2. Softlabeling 
3. SMOTE - Hard labeling - Stratified K Folds 
4. SMOTE - Soft labeling 

 
XGBoost  



Technion Competing risks survival analysis for 2 events - 
release from the hospital  or moving to a critical 
state. 

L1-regularized 
Cox regression 
Random Survival 
Forests 

Basis 1. Predicting patients’ probability to become high 
risk based on data available at early admission 
2. Predicting Onsets of o2-saturation<93% in look 
back windows 

XGBoost  

Matrix Predicting patients’ probability to deteriorate to 
mechanical ventilation based on data available at 
early admission 

XGBoost  
 

 

Results 
 

Model performance 

 

Given the different definitions and models, results varied significantly between the teams. 

Results for the most important variables for the best performing models are presented in table 6. 

Highest prediction accuracy was achieved by teams predicting specifically IMV, using the 

XGBoost implementations. AUC for the different models ranged from 0.96 to 1. The competing 

risks analysis for the ICU or deaths events all achieved a very high concordance score, which 

could be paralleled to AUC, of 0.86-0.89. The event demonstrating the least predictive 

capabilities was o2 deterioration, achieving predictive AUC of 0.725-0.807. 

 

Table 6 - model performance 

Team Predicted Variable Result 

Technion Competing risks - ICU or death Concordance score: 
Cox: 0.89, RSF: 0.86 

Basis Ventilation or death Accuracy: 62-78 depending on 
time slot 

O2-saturation<93% ROC AUC 72.5 - 80.7 



TSG IMV ROC AUC 0.96-0.98 

BeyondMinds IMV AUC 0.95-1 

High c-EWS score AUC 0.95-1 

Deterioration of c-EWS score AUC 0.98-1 

Matrix IMV AUC 0.96 - 0.98 

 

Feature importance 

 

The algorithms used by all teams, including XGBoost, Random Survival Forest and  Cox all 

provide information about the importance of the features in the model. In the XGBoost model 

and Random survival Forest The importance value of each marker represents its mutual 

information with the response variable, measured over the forest of trees that are built as part of 

the training procedure. The most important features for the best model for every time team are 

presented in table 7. 

 

Table 7 - Top significant factors 

Team  Important features 

technion psychiatric disorders, diabetes, obesity, autoimmune disease, 
hypertension,blood pressure; diuretics; blood substitutes and perfusion 
solutions. 

TSG Creatinine urine, CPK, FiO2, Arterial base excess, Calcium ionized, 
PTT, Albumin, CVP, Partial pressure of oxygen, CO2, Heart rate 

BeyondMinds O2 saturation, Blood pressure, CRP, respiration rate, RBC 

Matrix O2 saturation, oxyhemoglobin, lymphocytes, RBC 

Basis Protein levels, neutrophils, blood pressure, urea, CRP, calcium  

 

 

 



 

 

Discussion 
 

This work was a collaborative effort organized by MAFAT as part of the Sheba ARC data 

challenge, aimed at  predicting the future severity of COVID19 patients using their medical data 

and providing clinicians valuable tools in treating COVID patients. In this report we present the 

results of the 5 teams organised by MAFAT. All teams could predict with good accuracy which 

patients will deteriorate, as defined individually by each team, given age, background conditions, 

lab results and vital signs measurement at different time windows during the hospitalization. One 

team could indicate the how long a patient is expected to take until they are discharged or 

deteriorate, enabling better planning of patient load and possibly patient care. 

 

The main difference between this work and many related work trying to predict severity in 

COVID 19 patients is that this work describes the collaborative work of several teams, working 

towards mutual goals in different approaches. By using this approach, we could simultaneously 

investigate various solutions for a clinical problem, and provide the clinical team with different 

models with different applications. Roughly, our models could be divided to model aimed for use 

at the early stages of hospitalization (Matrix, Basis, BeyondMinds), and model that monitor 

patients in real-time throughout the hospitalization (Technion, TSG) and offer clinicians 

continuous decision support.  

 

The different approaches resulted in significant differences between the teams, with definitions 

of the predicted target, feature engineering and model design varying significantly. One key 

difference between the teams was training the model on a fixed time window at the start of the 

admission, vs.  training on the entire time frame. Surprisingly, results were better with the 

early-prediction models. This could be due to the fact that the most significant information was 

already available at admission, and the windows were wider (24-72 hours vs. only a few hours) 



 

Another key difference was in the predicted target definition. While some teams chose to define 

clinical deterioration as a narrow term restricted to mechanical ventilation only, others chose a 

broader term including other clinical markers of morbidity. Notably, Results were superior for all 

groups when predicting mechanical ventilation alone. This could be due to the fact that IMV was 

a common pathway to all medical complications for patients, and that, at least at the earlier 

stages of the pandemic, IMV was introduced to patients in a more liberal manner.  

 

All teams faced technical difficulties. The most prominent difficulty, affecting all teams, is the 

lack of data. Given less than 400 patients, and only a very limited amount of positive samples, 

and given the depth of available data, applying machine learning algorithms was very 

challenging. As the data was only available for a limited time, many technical improvements 

were not introduced due to time limitations, for example improved missing data imputation, 

balancing techniques for minority class, experimenting with other defined targets, etc. 

 

Individual teams faced more specific difficulties - the Technion team faced difficulty of 

evaluating ‘zero time’, as patients reached the ED and wards in different stages in their disease, 

while the TSG team conducting transfer learning from the MIMIC-III dataset had many relevant 

clinical data missing in the Sheba data. 

 

A possible data leakage is the fact that some labs and measurements were taken differently for 

patients, as more ‘alarming’ patients were taken more tests, and had richer data. 

 

In conclusion, we have demonstrated a multi-team approach for predicting future deterioration in 

COVID-19 patients. Different approaches were taken by the different teams, allowing several 

perspectives on the same problem and demonstrating the difference in accuracy between the 

models.  

 

 



 

Future Work and Call to Action 

In this work, multiple teams collaborated in a mutual effort to provide clinicians a valuable 

data-driven tool for treating COVID 19 patients. As the results are promising, this research is 

only the tip of the iceberg, and much work is yet to be done. We propose the following steps, in 

order to utilize our research and improve the quality of future works. 

 

1. Hospital Implementation 

Herby is a suggested architecture for a mid-term implementation and deployment of the work 

that has been done: 

 

 

Explanations: 

1. After a short alignment between the groups on the target and time interval of the 

prediction, the models developed should be deployed on Sheba’s cloud.  

2. Each day, there will be a manual run of inferences model for each of the 5 models 

presented in this summary.  

3. The predictions (on real data) should be tested over time separately and as an ensemble 

model (with simple average/majority of the predictions in the beginning).  We believe a 2 



month is appropriate time to evaluate the models (5 separately and ensemble one) 

accuracy. 

4. Up to this point, doctors will get the ensemble prediction once a day for each patient, as 

an offline (not connected to the EMRs) report. 

5. After 2 months of assessment, with some more improvements due to new labeled data, 

there will be an API to connect the EMRs, and operate on an hourly basis to predict 

patients’ deterioration. 

6. New hospitals can use this ensemble model (offline usage) with small adjustments by 

creating a generic semantic layer of medical data that is injected to the model.  

 

 

2. Aggregate data from different hospitals and unify data structure 

All teams unanimously agreed that the most significant difficulty in this work was the lack of the 

data. With only ~400 patients admitted to sheba and ~10% complicated patients, the ability to 

develop and test powerful machine-learning models was limited. A powerful solution for this 

problem is the use of data coming from other hospitals in Israel. A multi-center study, with 

hundreds of additional patients, could dramatically improve results, predictability and usability 

of our models. The unique structure of the Israeli health system is a unique opportunity for 

multicenter collaboration on a global scale, and this crisis could be a significant stepping stone 

for such a national-scale collaboration. 

Other than the lack of data, the variability in the preprocessing of the data is a significant 

difficulty when trying to integrate results from different teams. A single, well established and 

researched data structure would decrease development time, improve interoperability, improve 

results and allow large scale collaboration. When considering a national-scale collaboration as 

previously mentioned, unifying data structure across hospitals in Israel gains even greater 

importance. 

 

 

 



3. Establish a national, non-commercial supervising authority 

Lastly, this work was only possible due to diverse and cross-industry relations and collaborations 

of MAFAT. MAFAT as a unifying authority allowed this collaboration, the sharing of 

knowledge and resources, and peer-feedback. The large scale needs previously mentioned could 

only be answered by a national, non-commercial authority, with the ability to allocate resources 

needed for such high scale and long term steps needed to improve the national response to a 

significant health crisis. 

 

In conclusion, our recommendation are: 

1. The ability to collaborate and share data between hospitals in Israel is critical. In further 

steps collaborate data from hospitals across the world. 

2. A unified, well established, medical data structure is critical for future AI processes. 

3. To establish an actionable effective offline pipeline to support COVID-19 clinical 

procedures. 

 


